Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0379520230390020201
Çѱ¹µ¶¼ºÇÐȸÁö
2023 Volume.39 No. 2 p.201 ~ p.211
Integrated transcriptomic analysis of liver and kidney after 28 days of thioacetamide treatment in rats
Han Hyoung?Yun

Park Se-Myo
Ko Je-Won
Chenchen Li
Kim Sang-Kyum
Kim Tae-Won
Abstract
Thioacetamide (TAA) was developed as a pesticide; however, it was soon found to cause hepatic and renal toxicity. To evaluate target organ interactions during hepatotoxicity, we compared gene expression profiles in the liver and kidney after TAA treatment. Sprague?Dawley rats were treated daily with oral TAA and then sacrificed, and their tissues were evaluated for acute toxicity (30 and 100 mg/kg bw/day), 7-day (15 and 50 mg/kg bw/day), and 4-week repeated-dose toxicity (10 and 30 mg/kg). After the 4-week repeated toxicity study, total RNA was extracted from the liver and kidneys, and microarray analysis was performed. Differentially expressed genes were selected based on fold change and significance, and gene functions were analyzed using ingenuity pathway analysis. Microarray analysis showed that significantly regulated genes were involved in liver hyperplasia, renal tubule injury, and kidney failure in the TAA-treated group. Commonly regulated genes in the liver or kidney were associated with xenobiotic metabolism, lipid metabolism, and oxidative stress. We revealed changes in the molecular pathways of the target organs in response to TAA and provided information on candidate genes that can indicate TAA-induced toxicity. These results may help elucidate the underlying mechanisms of target organ interactions during TAA-induced hepatotoxicity.
KEYWORD
Thioacetamide, Hepatotoxicity, Nephrotoxicity, Oxidative stress, Oral toxicity
FullTexts / Linksout information
 
Listed journal information